
DOSSIER CE1D

Transformations du plan et étapes de constructions

Mr De Vuyst INSTITUT DES URSULINES DE KOEKELBERG

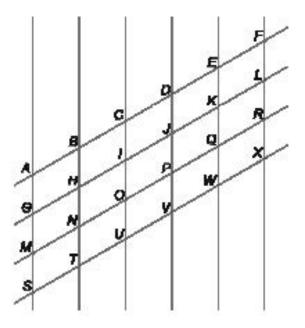
(CEID 2010 Q5)

Voici dans le désordre, les consignes du programme de construction de la figure ci-dessus.

- a) Trace la droite d₂ parallèle au segment [PT] passant par le point S.
- b) Nomme O le point d'intersection des droites d_1 et d_2 .
- c) Trace un triangle STP rectangle en S, tel que le segment [SP] mesure 6 cm et le segment [ST] mesure 3 cm.
- d) Trace la droite d_1 perpendiculaire à la droite d_2 et passant par le point P.

NOTE, dans les cases ci-dessous, les lettres qui correspondent à l'ordre suivi pour réaliser la construction.

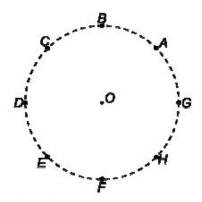
Étape 1	Étape 2	Étape 3	Étape 4


(CEID 2010 Q18)

Quelle figure correspond au programme de construction suivant ?

- Construire un triangle ROS rectangle en R.
- Construire la droite d₂ parallèle à la droite OS passant par le point R.
- Construire la droite d₁ médiatrice du segment [RO].
- Placer E le point d'intersection des droites d₁ et d₂.

(CEID 2010 Q29)



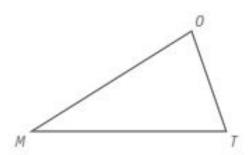
ÉCRIS le nom et l'(les) élément(s) caractéristique(s) d'une transformation du plan qui applique :

· le t	riangle LQK sur le triangle JEK?	
le t	rapèze ABIG sur le trapèze NOVT ?	

(CEID 2010 Q30)

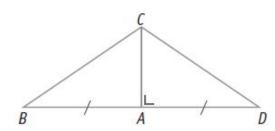
Les points notés sur ce cercle sont les sommets d'un octogone régulier.

DÉTERMINE l'ir	mage du triangle	OBC par la rotation	de centre O et	d'amplitude +90° ?
----------------	------------------	---------------------	----------------	--------------------


triangle							•	•	•		•	•	•		٠	•	•	•	•	•			•		•	•		•		
----------	--	--	--	--	--	--	---	---	---	--	---	---	---	--	---	---	---	---	---	---	--	--	---	--	---	---	--	---	--	--

ÉCRIS le sens et l'amplitude de l'angle de la rotation de centre O qui applique le point F sur le point C?

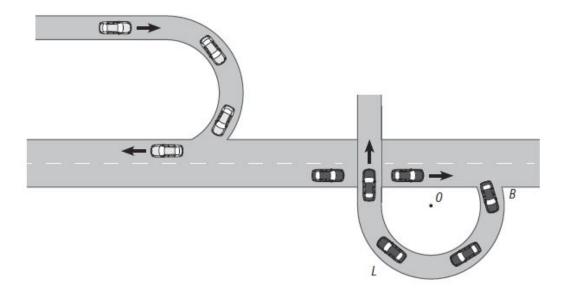
•	•			•	•	•	•	•	٠			•	•	•	•	•	•	•



(CEID 2011 Q1)

- CONSTRUIS le point A image du point M pour la translation qui applique le point O sur le point T.
- CONSTRUIS le point B image du point T par la symétrie orthogonale d'axe MO.

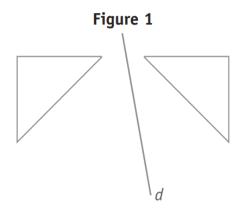
(CEID 2011 Q25)

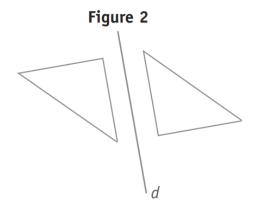

La hauteur [AC] du triangle BCD mesure 2 cm. La longueur du segment [AB] vaut 3 cm.

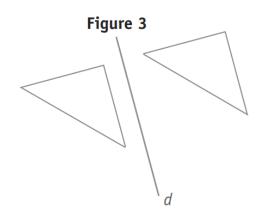
■ **CONSTRUIS** un agrandissement de la figure en prenant 4,5 cm pour mesure de [AB].

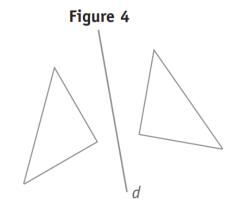
(CEID 2011 Q22)

Voici le plan d'une partie de route sur lequel on a représenté les trajectoires de deux voitures : une voiture blanche et une voiture noire.

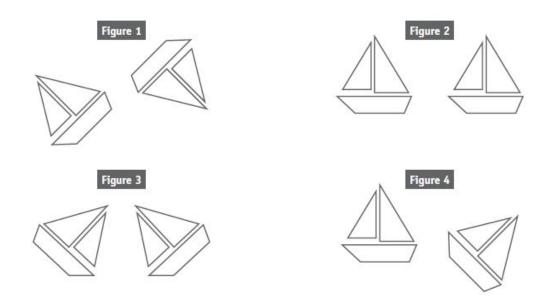

La voiture noire passe de la position B à la position L.


■ CARACTÉRISE la rotation qui correspond à ce mouvement.

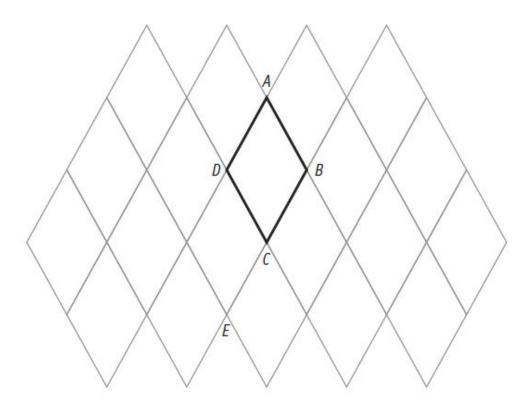

Ampl	ii	u	d	e	:	•	٠	
Sens	:							


(CEID 2011 Q29)

■ ÉCRIS le numéro de la figure dans laquelle un triangle est l'image de l'autre par la symétrie orthogonale d'axe d.



■ Figure n°

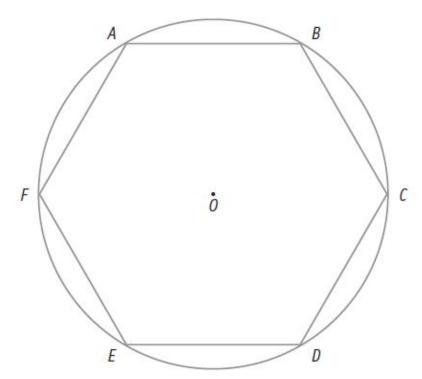

(CEID 2012 Q10)

■ ÉCRIS le numéro de la figure dans laquelle un bateau est l'image de l'autre par une symétrie orthogonale.

Figure : _____

(CEID 2012 Q21)

La partie du pavage représentée ci-dessus est constituée de losanges tous identiques au losange ABCD. Le triangle ABD est équilatéral.


- On appelle t la translation qui applique le point B sur le point E.
 HACHURE en rouge l'image du losange ABCD par la translation t.
- On appelle S la symétrie centrale de centre B.
 HACHURE en bleu l'image du losange ABCD par la symétrie centrale S.
- On appelle \mathcal{R} la rotation de centre D qui applique le point B sur le point A. **HACHURE** en vert l'image du losange ABCD par la rotation \mathcal{R} .
- DÉTERMINE (sans mesurer) l'amplitude de l'angle de la rotation R.

 Amplitude de la rotation R = ______

 JUSTIFIE ta réponse.

(CEID 2012 Q22)

COMPLÈTE.

	17.	1	·	1			The second secon		7	DE		
a)	Image	all	noint F	narl	2	CVMATHA	orthogonale	\mathbf{a}	AVA	KF.	ACT	
ci j	Lilliage	uu	point /	pai u	ч	Symicule	orthogonate	ч	anc	UL	CJL	

b)	L'image	du segment	[AB]	par l	a symétrie	centrale	de	centre	0
	est								

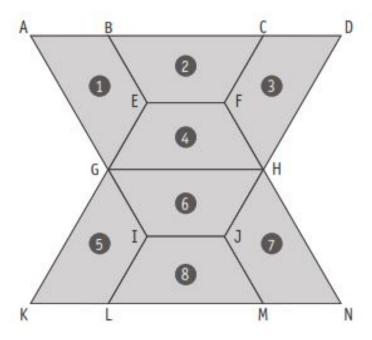
c)	L'image o	du point E	par la	translation	qui	applique le	point	F sur le	point 0
	est								


d)	L'axe de la symétrie	qui applique	le triangle A	OF sur le	triangle COD
	est				

e)	L'angle ABO	a pour image l'angle	OCD pa	r la t	translation	qui	applique
	le point	sur le point					

(CEID 2013 Q9)

Le segment [A'B'] est un agrandissement du coté [AB] du trapèze rectangle ABCD.

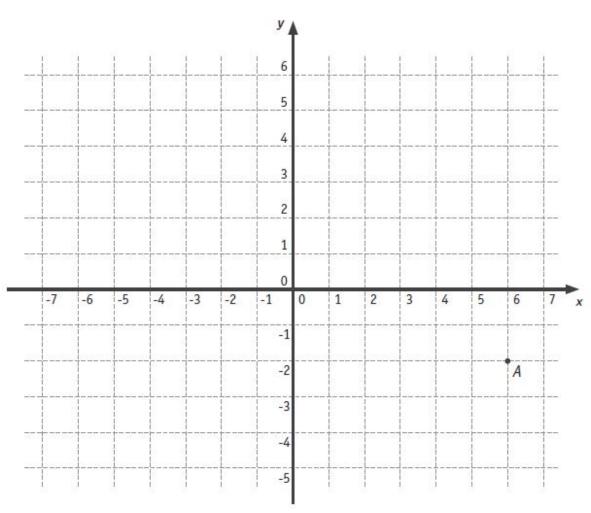

► CONSTRUIS A'B'C'D', image de ABCD par cet agrandissement.

(CEID 2013 Q10)

La figure suivante est constituée de trapèzes isométriques.

- ► COMPLÈTE les phrases.
 - La transformation du plan qui applique le trapèze 2 sur le trapèze 6 est

Élément caractéristique de cette transformation :


• La transformation du plan qui applique le trapèze 🕦 sur le trapèze 🌀 est

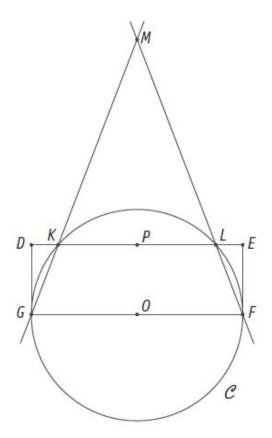
Élément caractéristique de cette transformation :

- ▶ PLACE le centre 0 de la symétrie centrale qui applique le trapèze ③ sur le trapèze ⑤.
- ► TRACE en couleur les axes de symétrie de la figure ADHNKG.

(CEID 2013 Q33)

- ▶ SITUE le point P de coordonnées (4 ; 0).
- ▶ SITUE le point S de coordonnées (-2; -3).
- ▶ ÉCRIS les coordonnées du point A.

Coordonnées de A: (____;___)


▶ ÉCRIS les coordonnées de A', image du point A par la symétrie centrale de centre O.

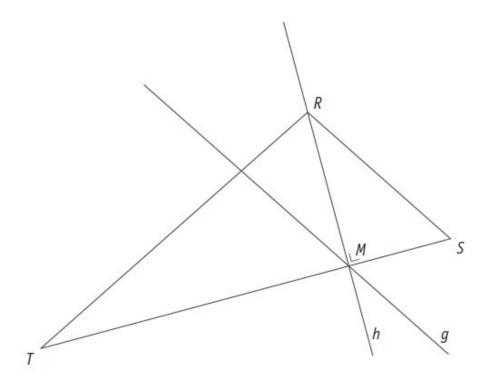
Coordonnées de A': (____;___)

► ÉCRIS les coordonnées de B', image du point B (-124 ; -216) par la symétrie centrale de centre O.

Coordonnées de B': (____;___)

(CEID 2014 Q4)

Voici le programme qui a permis la construction de cette figure. Les deux dernières étapes ont été effacées.


RÉÉCRIS-LES.

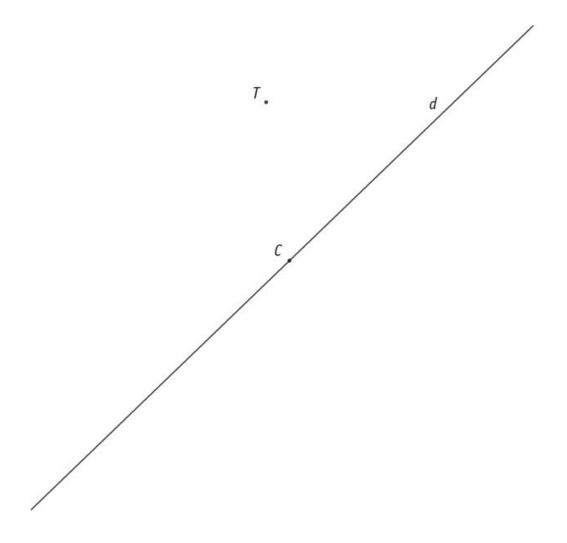
- Construis un rectangle DEFG.
- Place le point 0, milieu du segment [FG].
- Place le point P, milieu du segment [DE].
- ullet Trace le cercle ${\mathcal C}$ de centre 0 et de rayon $[{\it G0}]$.
- ullet Place le point K, intersection du segment [DP] et du cercle ${\mathcal C}$
- ullet Place le point L, intersection du segment $[\mathit{EP}]$ et du cercle \mathcal{C} .
- Trace la droite GK.

•

(CEID 2014 Q5)

Voici, dans le désordre, les consignes du programme de construction de la figure ci-dessus.

- A Trace la droite h, hauteur relative au côté [ST].
- B Trace la droite g parallèle à la droite RS passant par le point M.
- Trace un triangle RST.
- Nomme M le point d'intersection des droites h et ST.

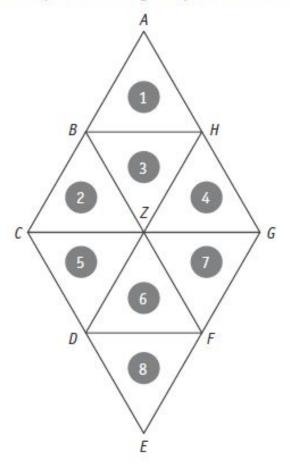

NOTE, dans les cases ci-dessous, les lettres qui correspondent à l'ordre suivi pour réaliser la construction.

Étape 1	Étape 2	Étape 3	Étape 4		

(CEID 2015 Q34)

CONSTRUIS un triangle isocèle TRI de base [TR] si

- le point R est l'image du point T par la symétrie orthogonale d'axe d;
- le point *C* est le centre du cercle circonscrit à ce triangle.


(CEID 2016 Q1)

COMPLÈTE.

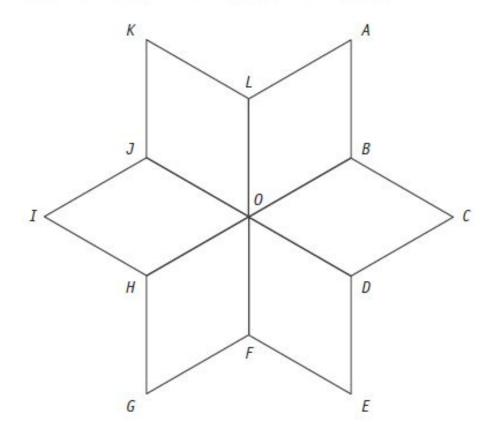
Un quadrilatère qui a un centre de symétrie mais pas d'axe de symétrie	
est un	
Un quadrilatère dont les diagonales sont les seuls axes de symétrie	
est un	

(CEID 2015 Q40)

La figure ci-dessous est composée de triangles équilatéraux numérotés de 1 à 8.

Exemple:

■ Une des transformations du plan qui applique le triangle 5 sur le triangle 6 est la rotation de centre D et d'amplitude -60°


COMPLÈTE en étant aussi précis que l'exemple :

•	une des transformations du plan qui applique le triangle 📵 sur le triangle 🔞)
	est	

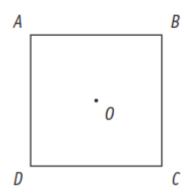
•	une des transformations du plan qui applique le triangle	0	sur le triangle	4
	est			

(CEID 2015 Q41)

La figure ci-dessous est constituée de 6 losanges superposables.

- HACHURE en bleu l'image du losange KLOJ par la symétrie d'axe AG.
- HACHURE en vert l'image du triangle HFO par la symétrie de centre O.
- DÉTERMINE l'image de I par la translation t qui applique le point H sur le point D.
 Image de I:
- lacksquare On appelle $oldsymbol{\mathcal{R}}$ la rotation de centre $\emph{0}$ qui applique \emph{B} sur \emph{J} .

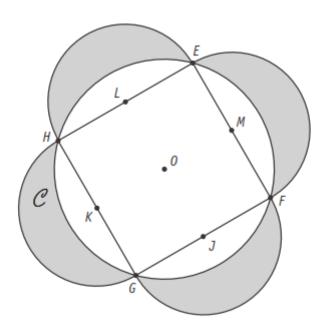
HACHURE en noir l'image du triangle FED par la rotation \mathcal{R} .


DÉTERMINE l'amplitude de l'angle de la rotation 🗩.

Amplitude de l'angle de la rotation 🔊: _____º

(CEID 2016 Q2)

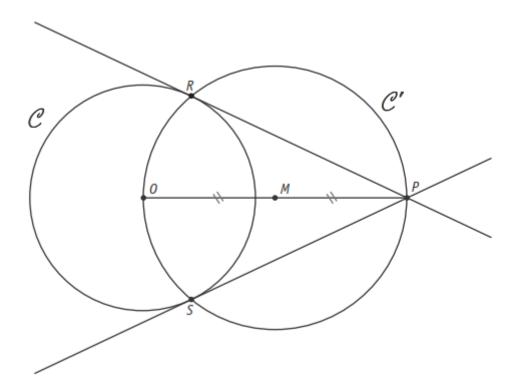
ABCD est un carré.


Le point ${\it 0}$ est l'intersection des diagonales.

COMPLÈTE en n'utilisant que les points A, B, C, D, O.

•
$$S_{0D}(B) =$$

(CEID 2016 Q23)



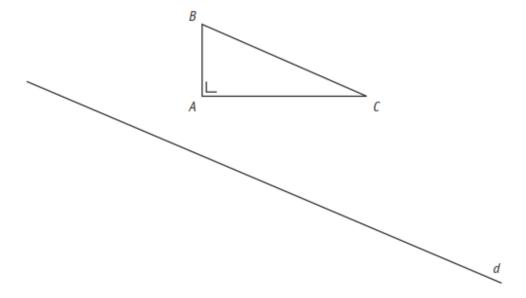
NUMÉROTE les étapes qui correspondent à l'ordre suivi pour réaliser la construction des lunules d'Hippocrate tracées ci-dessus.

Le (5) est déjà placé.

_	Construis à l'extérieur du cercle \mathcal{C} , quatre demi-cercles de diamètre $ EF $ et de centres J , K , L , M .
	Trace un cercle ${\mathcal C}$ de centre ${\it 0}.$
	Place M le milieu de [EF], J le milieu de [FG], K le milieu de [GH] et L le milieu de [EH].
	Construis un carré $\it EFGH$ inscrit dans le cercle $\it C$.
5	Colorie les 4 parties comprises entre le cercle et les 4 demi-cercles. Ce sont les lunules d'Hippocrate.

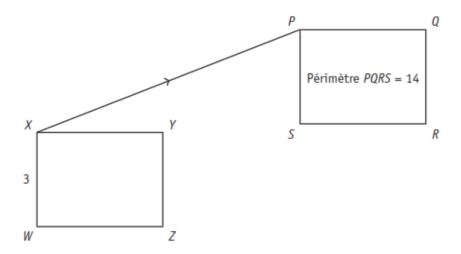
(CEID 2016 Q24)

Voici le programme de construction de la figure ci-dessus.


Deux étapes ont été effacées.

RÉÉCRIS-LES.

- $oldsymbol{1}$ Trace un cercle $\mathcal C$ de centre $\mathit 0$ et de rayon 3 cm.
- 2 Place un point P à 7 cm de O.
- 3
- f 4 Trace le cercle $m{\mathcal{C}}'$ de centre $m{M}$ et de diamètre $|\it{OP}|$.
- **⑤** Nomme R et S les points d'intersection de ces deux cercles $\mathcal C$ et $\mathcal C'$.
- **6**


(CEID 2016 Q35)

CONSTRUIS l'image A'B'C' du triangle ABC par la symétrie orthogonale d'axe d.

(CEID 2016 Q36)

La translation de vecteur \overrightarrow{XP} applique le rectangle XYZW sur le rectangle PQRS.

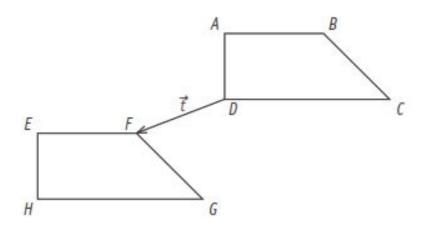
CALCULE la distance |SR|.

ÉCRIS tous tes calculs.

JUSTIFIE ta démarche par un invariant.

(CEID 2018 Q17)

Le point A' est l'image du point A par la symétrie orthogonale d'axe d.

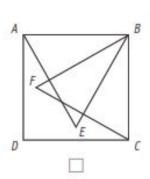

CONSTRUIS le point B', image du point B, par cette symétrie orthogonale.

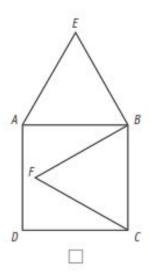
LAISSE tes constructions visibles.

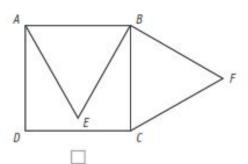
.A

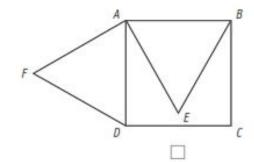
.B

(CEID 2018 Q18)

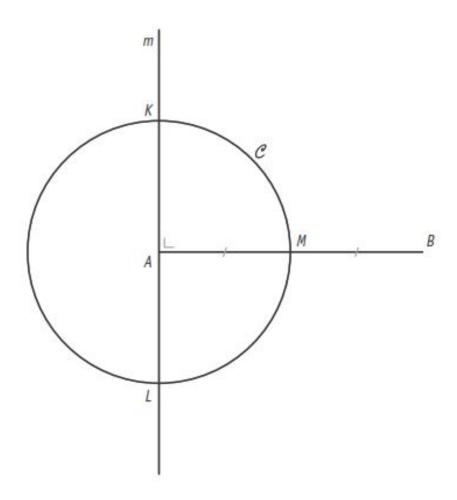

JUSTIFIE que l'image du trapèze ABCD par la translation \vec{t} n'est pas le trapèze EFGH.


(CEID 2018 Q25)


Voici un programme de construction.


- 1 Trace un carré ABCD.
- Construis le triangle équilatéral ABE dont le sommet E est intérieur au carré.
- Construis le triangle équilatéral BCF dont le sommet F est extérieur au carré.

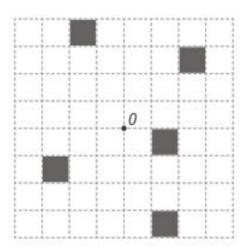
COCHE la figure obtenue.



(CEID 2018 Q26)

COMPLÈTE les étapes pour obtenir un programme de construction de la figure ci-dessus.

0	Trace	le	segment	[AB]	
---	-------	----	---------	------	--


0					
-					

6	Trace	le	cercle	Cde	centre	A	et	de	rayon	[AM]
---	-------	----	--------	-----	--------	---	----	----	-------	------

lacktriangle Nomme K et L les points d'intersection de la droite m et du cercle ${\mathcal C}$

(CEID 2018 Q19)

 ${f colorization colorization$

