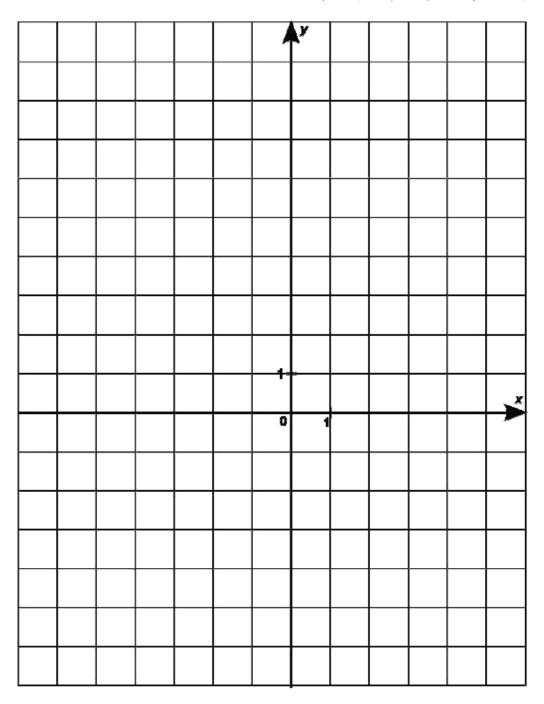
DOSSIER CEID


Solides et figures

Mr De Vuyst INSTITUT DES URSULINES DE KOEKELBERG

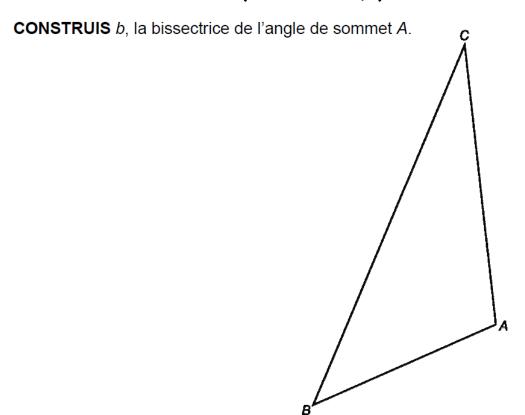
(CEID 2010 Q4)

DESSINE le rectangle ABCD dans le repère ci-dessous. On donne les coordonnées de trois sommets A (4 ; 6), B (1 ; 9) et C (-4 ; 4).

ÉCRIS les coordonnées du sommet D.

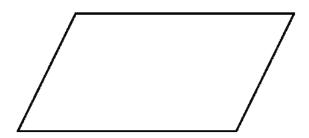
D (.....)

(CEID 2010 Q6)


CONSTRUIS un triangle ABC.

Le côté [BC] est dessiné ci-dessous, le côté [AB] mesure 5 cm et le côté [AC] mesure 3 cm.

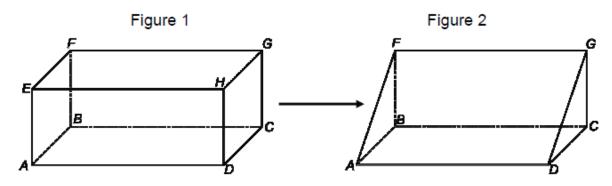
CONSTRUIS *m*, la médiatrice du côté [*BC*].



(CEID 2010 Q7)

(CEID 2010 Q8)

TRACE les diagonales du parallélogramme ci-dessous.

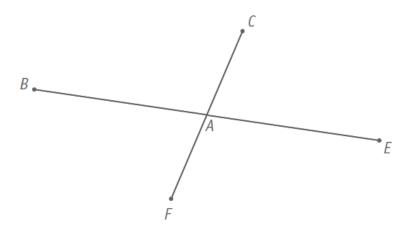


COCHE la proposition correcte.

Les diagonales d'un parallélogramme sont toujours perpendiculaires.	
Les diagonales d'un parallélogramme sont toujours de même longueur.	
Les diagonales d'un parallélogramme se coupent toujours en leur milieu.	

(CEID 2010 Q17)

Le prisme de la figure 1 possède deux bases carrées *EFBA* et *HGCD*. Il a été coupé pour obtenir le prisme de la figure 2. L'arête [*GC*] mesure 4 cm et l'arête [*AD*] mesure 10 cm.

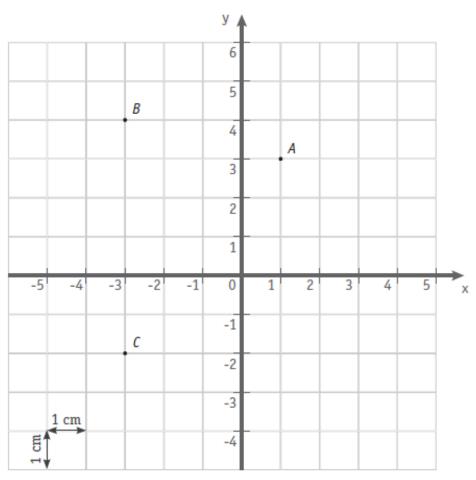

COMPARE les longueurs des côtés [DC] et [GC] du triangle GCD.
JUSTIFIE en utilisant la figure 1 :
ÉCRIS l'amplitude de l'angle \widehat{GCD} du triangle GCD ?
JUSTIFIE en utilisant la figure 1 :
ÉCRIS la nature du triangle GCD (2 caractéristiques)

DESSINE ce triangle en vraie grandeur :

(CEID 2011 Q12)

Le point E est l'image du point B par la symétrie centrale de centre A.

Le point F est l'image du point C par la symétrie centrale de centre A.



- **DÉTERMINE** la nature du quadrilatère *BFEC*.
- JUSTIFIE ta réponse par une propriété.

(CEID 2011 Q26)

■ ÉCRIS le nom du quadrilatère qui correspond à l'affirmation suivante : « Ses diagonales sont ses seuls axes de symétrie. »

(CEID 2011 Q13)

■ ÉCRIS les coordonnées des points A et C.

■ CALCULE l'aire du triangle ABC.

■ CONSTRUIS, dans le repère ci-dessus, le triangle A'B'C' sachant que les points A', B' et C' ont pour coordonnées les opposés des coordonnées des sommets du triangle ABC.

(CEID 2012 Q27)

ATTENTION : Les figures ne sont pas représentées à l'échelle.


		6	
2,5	La figure A est un rectangle	1	
	La rigure A est un rectangle	La figure B est composée de deux carrés imbriqués.	

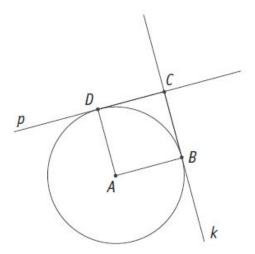
- CALCULE le périmètre de la figure A sachant que les deux parties grisées ont la même aire.
- ÉCRIS tout ton raisonnement et tes calculs.

■ EXPRIME ta réponse par une phrase.

(CEID 2012 Q35)

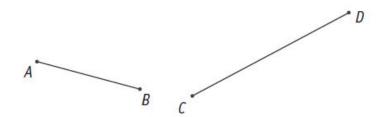
■ **CONSTRUIS** un rectangle *FGHI* tel que *d* est l'un de ses axes de symétrie et dont la longueur vaut le double de la largeur.

Il est possible de construire d'autres rectangles répondant à ces conditions.

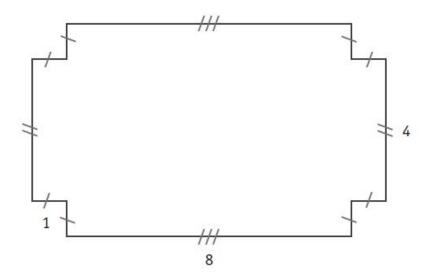

■ **COMPLÈTE** la phrase.

Le nombre total de rectangles que l'on peut construire est

(CEID 2013 Q34)

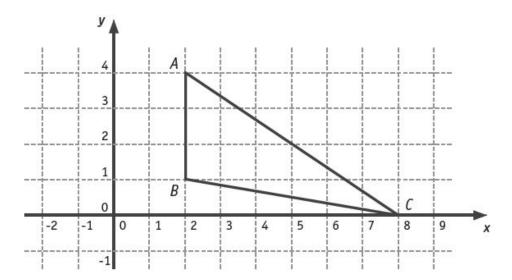

Le rayon [AB] est perpendiculaire au rayon [AD]. La droite p est perpendiculaire à [AD] en D. La droite k est perpendiculaire à [AB] en B.

- ▶ PRÉCISE la nature du quadrilatère ABCD.
- ▶ JUSTIFIE ta réponse.


(CEID 2013 Q8)

ightharpoonup CONSTRUIS le point E pour que les triangles ABE et CDE soient isocèles.

(CEID 2013 Q15)


▶ CALCULE l'aire d'un carré qui a le même périmètre que la figure ci-dessous.

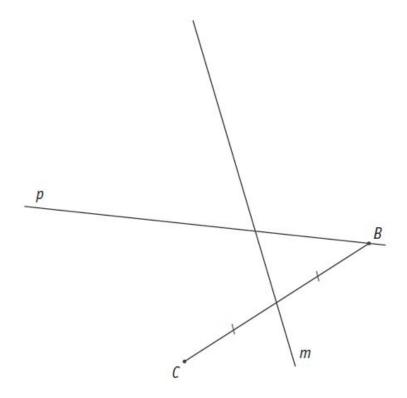
 \blacktriangleright ÉCRIS tout ton raisonnement et tous tes calculs.

11

(CEID 2013 Q16)

► CALCULE, sans mesurer, l'aire du triangle ABC. ÉCRIS tout ton raisonnement et tous tes calculs.

(CEID 2013 Q30)

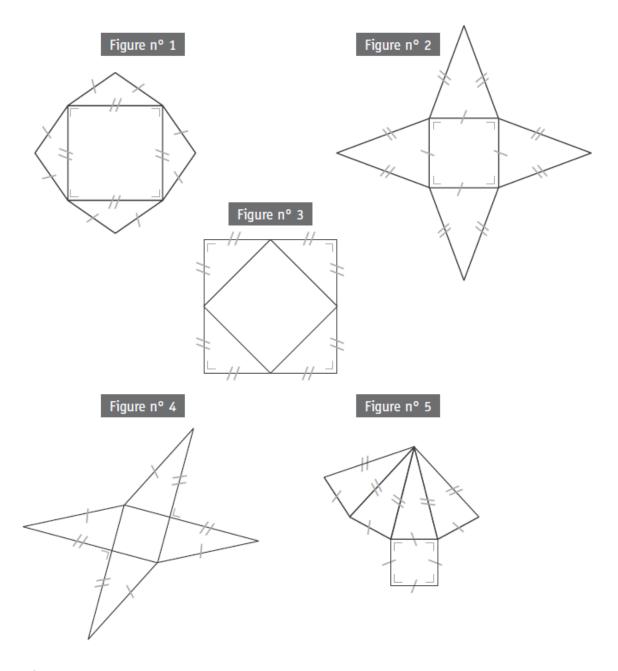

Marina souhaite peindre les murs de sa chambre. L'aire totale des murs est de 36 m². Un litre de peinture permet de couvrir 4 m². Un pot de 3 litres de peinture coute 45 €.

► CALCULE le montant à payer pour peindre les murs de la chambre. ÉCRIS tout ton raisonnement et tous tes calculs.

				-
Montan	t à i	naver	•	€
Piolitali	La	payer	•	

(CEID 2013 Q35)

- ► CONSTRUIS le sommet A du triangle ABC si :
 - la droite p est la bissectrice de l'angle ABC;
 - la droite m est la médiane relative au côté [BC].

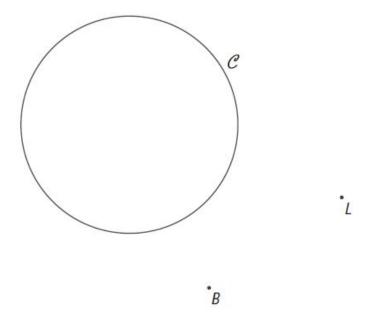


(CEID 2014 Q2)

CONSTRUIS un losange dont une diagonale mesure 5 cm et les côtés 3 cm.

(CEID 2013 Q42)

Les figures suivantes sont à l'échelle.


► ÉCRIS les numéros des deux figures qui représentent un développement d'une pyramide à base carrée.

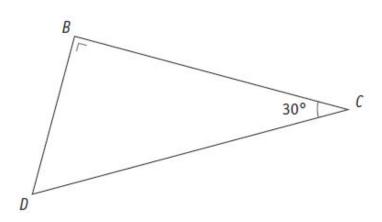
Réponse : figures n° _____ et n° ____

(CEID 2014 QI)

CONSTRUIS un triangle isocèle *BAL* dont le sommet *A* est un point du cercle \mathcal{C} et tel que |AB| = |AL|.

LAISSE tes constructions visibles.

(CEID 2015 Q22)


ÉCRIS la mesure de la hauteur de chaque solide.

3 cm	7 cm
Hauteur:cm	Hauteur:cm

(CEID 2014 Q3)

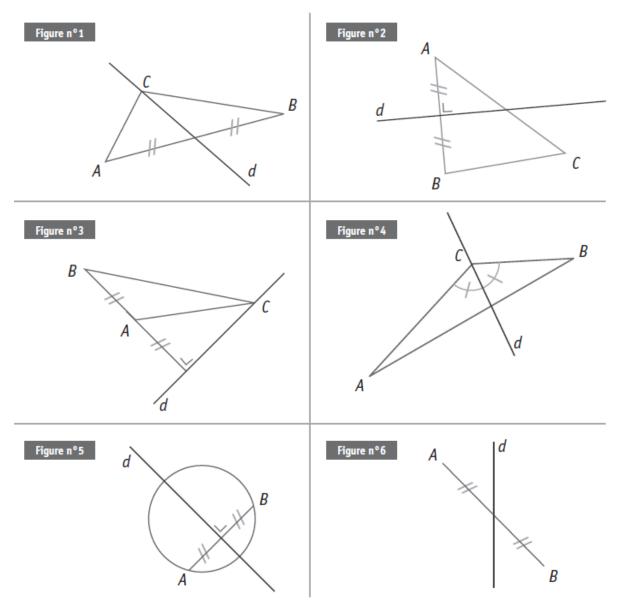
Le triangle BCD est rectangle en B.

L'angle \widehat{BCD} mesure 30°.

TRACE le triangle équilatéral DCE tel que les points B et E sont situés de part et d'autre de DC.

DÉTERMINE la nature du quadrilatère BCED.

Le quadrilatère BCED est un


(CEID 2014 Q25)

ENTOURE VRAI ou FAUX pour chacune des affirmations ci-dessous.

- Si tu as entouré VRAI, JUSTIFIE ta réponse.
- Si tu as entouré FAUX, ÉCRIS un contre-exemple.

Lain	plitude d'un angle obtus. VRAI – FAUX
	on additionne l'amplitude d'un angle aigu à celle d'un angle obtus, on obt ours l'amplitude d'un angle plat. VRAI – FAUX
	deux angles aigus d'un triangle rectangle sont complémentaires.

(CEID 2014 Q29)

ÉCRIS les numéros des deux figures où la droite d est la médiatrice du segment [AB].

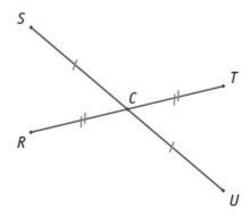
Figure n°_____ et figure n°_____

JUSTIFIE ton choix.

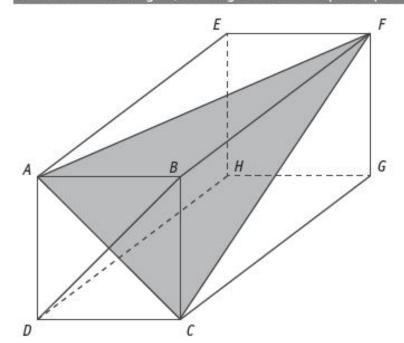
(CEID 2014 Q30)

JUSTIFIE pourquoi l'énoncé suivant est faux.

« Un triangle isocèle qui a un angle de 45° est toujours un triangle rectangle. »


JUSTIFIE pourquoi l'énoncé suivant est vrai.

« Un triangle isocèle dont l'angle au sommet vaut 60° est un triangle équilatéral. »


(CEID 2015 Q29)

Les segments [RT] et [SU] se coupent en C. **DÉTERMINE** la nature du quadrilatère RSTU. **JUSTIFIE** ta réponse.

(CEID 2015 Q23)

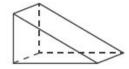
Attention : sur la figure, les longueurs ne sont pas respectées.

Le solide représenté ci-contre est un prisme droit.

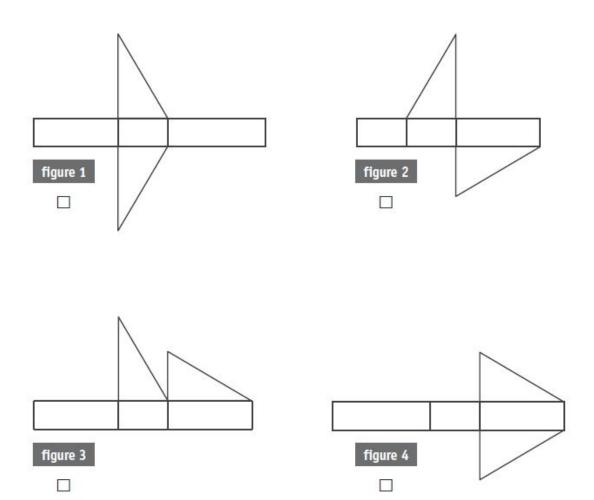
La face ABCD est un carré de 4 cm de côté.

L'arête [AE] mesure 7,5 cm.

COMPLÈTE les phrases par un des mots suivants :

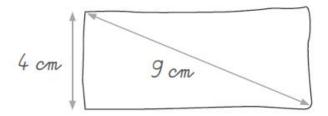

Obtusangle | Rectangle | Isocèle | Équilatéral

- AFC est un triangle _____
- AEF est un triangle _____


CONSTRUIS le triangle CFG en vraie grandeur.

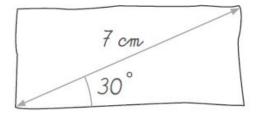
(CEID 2015 Q24)

Voici une représentation d'un prisme droit à base triangulaire.



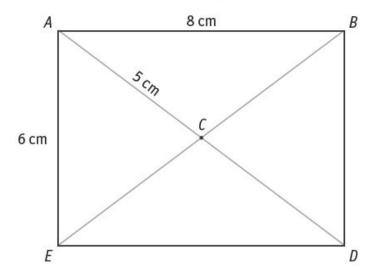
COCHE les figures qui correspondent au développement de ce prisme.

(CEID 2015 Q25)


Le rectangle ci-dessous est tracé à main levée.

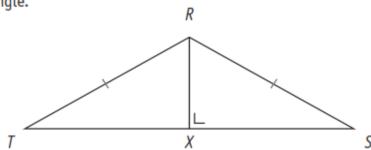
CONSTRUIS, avec tes instruments, ce rectangle en respectant les indications de mesure.

(CEID 2015 Q26)


Le rectangle ci-dessous est tracé à main levée.

CONSTRUIS ce rectangle en vraie grandeur.

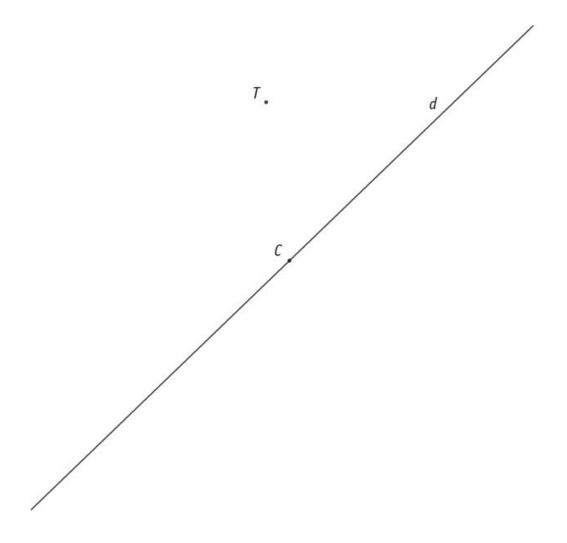
(CEID 2015 Q30)


ABDE est un rectangle dont les diagonales se coupent en C.

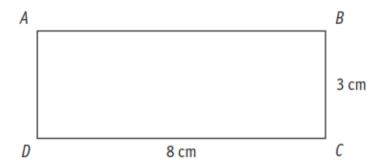
JUSTIFIE, à l'aide de propriétés, que le périmètre du triangle ABD mesure 24 cm.

(CEID 2016 Q3)

RST est un triangle.



JUSTIFIE par une propriété que |XT| = |XS|.


(CEID 2015 Q34)

CONSTRUIS un triangle isocèle TRI de base [TR] si

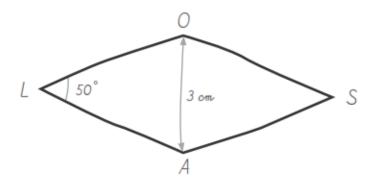
- le point R est l'image du point T par la symétrie orthogonale d'axe d;
- \blacksquare le point C est le centre du cercle circonscrit à ce triangle.

(CEID 2016 Q13)

On souhaite reproduire le rectangle ABCD à l'échelle pour que la longueur mesure 24 cm.

DÉTERMINE le périmètre du rectangle agrandi.

ÉCRIS tous tes calculs.


(CEID 2016 Q22)

ÉCRIS l'abscisse du point <i>C</i> .
Abscisse de C:
ÉCRIS les coordonnées du point A.
Coordonnées de A:
TRACE un carré <i>ABCD</i> dont le segment [<i>AC</i>] est une diagonale.
ÉCRIS les coordonnées du point <i>D</i> .
Coordonnées de D:

(CEID 2016 Q25)

Le losange ci-dessous est dessiné à main levée.

CONSTRUIS ce losange en vraie grandeur.

(CEID 2017 Q17)

ENTOURE la réponse correcte pour chaque proposition.

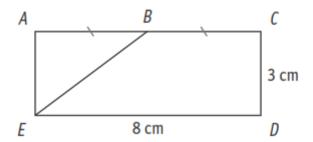
Si on double les mesures des côtés d'un rectangle alors on double l'amplitude de ses angles.	Toujours vrai	Toujours faux	On ne peut pas conclure
Un rectangle est un trapèze.	Toujours vrai	Toujours faux	On ne peut pas conclure
Un quadrilatère dont les diagonales ont la même longueur est un rectangle.	Toujours vrai	Toujours faux	On ne peut pas conclure

(CEID 2016 Q34)

CONSTRUIS deux triangles tels que les milieux des côtés de l'un soient les sommets de l'autre.

(CEID 2016 Q40)

Naomi a une piscine de 12 m de long, de 7 m de large et de 1,6 m de profondeur.

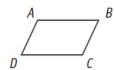

CALCULE le volume d'eau nécessaire pour remplir cette piscine jusqu'à 10 cm du bord supérieur.

ÉCRIS tous tes calculs.

Volume d'eau nécessaire = _____ m³

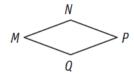
(CEID 2016 Q41)

Le rectangle ACDE n'est pas en vraie grandeur.



CALCULE l'aire du trapèze rectangle BCDE.

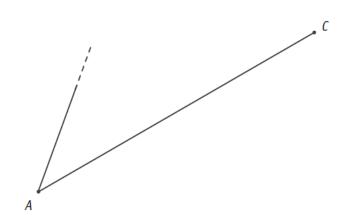
Aire de
$$BCDE =$$
_____ cm²


(CEID 2017 Q16)

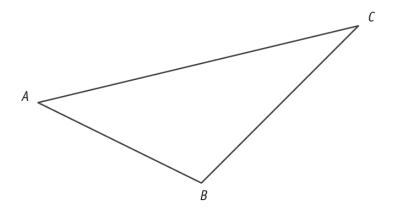
■ *ABCD* est un parallélogramme.

JUSTIFIE, par une propriété, que $|\widehat{DAB}| = |\widehat{DCB}|$.

■ *MNPQ* est un losange.



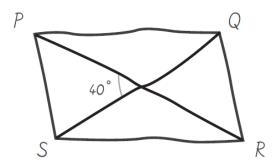
JUSTIFIE, par une propriété, que la droite MP est la médiatrice du segment [NQ].


(CEID 2017 Q14)

TERMINE la construction du triangle isocèle *ABC* dont [*AC*] est la base.

LAISSE tes constructions visibles.

(CEID 2018 Q8)



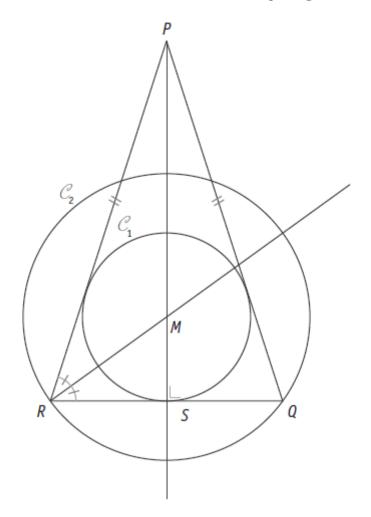
TRACE, en bleu, la médiatrice relative au côté [BC].

TRACE, en noir, la bissectrice de l'angle \overrightarrow{ABC} .

(CEID 2017 Q15)

Le parallélogramme ci-dessous est dessiné à main levée.

$$|PR| = 7$$

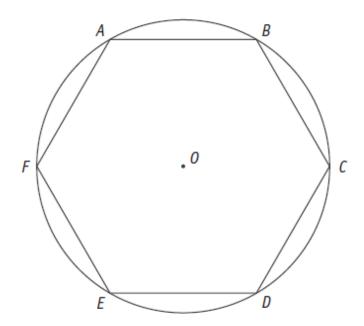

$$|SQ| = 5$$

 ${f CONSTRUIS}$ le parallélogramme ${\it PQRS}$ en vraie grandeur en prenant 1 cm comme unité de longueur.

(CEID 2017 Q38)

Le triangle RPQ est isocèle en P.

[MS] et [MR] sont respectivement les rayons des cercles $\mathcal{C}_{\mathbf{1}}$ et $\mathcal{C}_{\mathbf{2}}$.



COMPLÈTE les phrases suivantes avec le vocabulaire adéquat et précis :

- lacksquare Le cercle $\mathcal{C}_{\!\!\!1}$ est le cercle _____ au triangle PQR.
- lacksquare La droite RP est ______ au cercle $\mathcal{C}_{\!\!2}$.
- La droite RM est une ______ du triangle PQR.

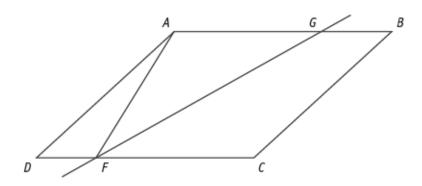
(CEID 2017 Q39)

Un hexagone régulier ABCDEF est inscrit dans un cercle de centre O.

DÉTERMINE la nature du triangle *ACE* en écrivant l'adjectif qui le caractérise au mieux.

ACE est un triangle ______

DÉTERMINE la nature du quadrilatère *ABDE* en écrivant le nom qui le caractérise au mieux.


■ ABDE est un _____

(CEID 2018 Q7)

ABCD est un parallélogramme.

F est un point du côté [CD].

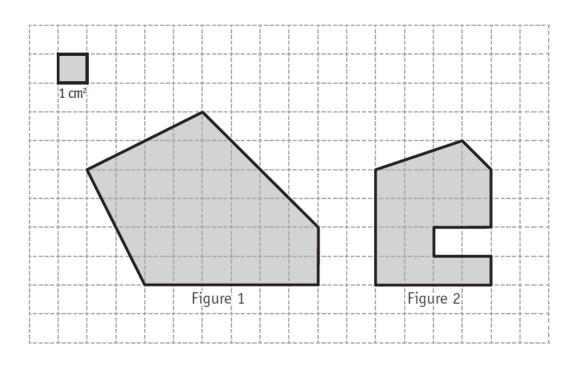
La bissectrice de l'angle \widehat{AFC} coupe le côté [AB] en G.

JUSTIFIE chaque étape du raisonnement suivant qui permet d'affirmer que le triangle *AFG* est isocèle.

$$|\widehat{AFG}| = |\widehat{GFC}|$$
 car

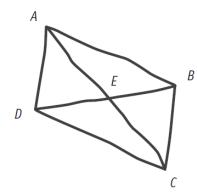
$$|\widehat{GFC}| = |\widehat{FGA}|$$
 car

Le triangle AFG est isocèle car


(CEID 2018 Q9) construis un triangle dont le côté [AB] est donné et dont les deux autres côtés mesurent 8 cm et 4 cm.

DÉTERMINE le nombre de triangles que tu pourrais construire.

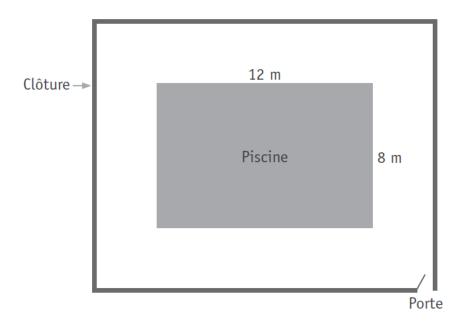
Nombre de triangles : _____


(CEID 2018 Q20) DÉTERMINE, à l'aide du quadrillage, l'aire de chaque figure.

Aire de la figure 1 = ____ cm²

(CEID 2018 Q10)

Le parallélogramme ABCD ci-dessous est tracé à main levée.

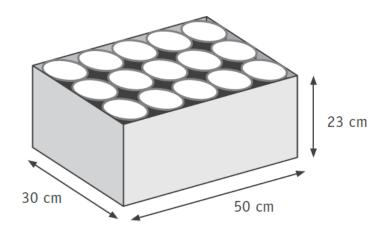

$$|AE| = 4$$

$$|DE| = 3$$

$$|CD| = 5,5$$

CONSTRUIS le parallélogramme *ABCD* en vraie grandeur en prenant 1 cm comme unité de longueur.

(CEID 2018 Q21)



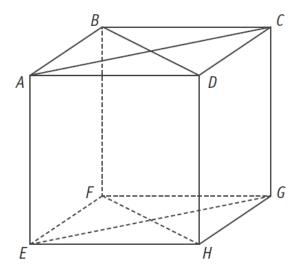
Un propriétaire de camping veut placer une clôture autour de sa piscine rectangulaire. La clôture de forme rectangulaire est distante de 3,5 m des bords de la piscine. L'accès à la piscine s'effectue par une porte de 1 m de large.

CALCULE la longueur totale de la clôture (sans la porte). **ÉCRIS** tous tes calculs.

(CEID 2018 Q34)

Le carton ci-dessus contient deux niveaux de quinze boites de conserve cylindriques. Chaque boite a une hauteur de 11,5 cm et un rayon de 5 cm.

La formule pour calculer le volume d'un cylindre est


$$V = \pi \cdot r^2 \cdot h$$

avec r représentant son rayon et h sa hauteur.

CALCULE le volume laissé libre autour des boites de conserve.

ÉCRIS tous tes calculs.

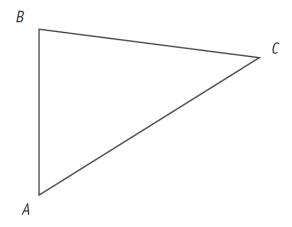
(CEID 2018 Q36)

Le solide représenté ci-dessus est un cube.

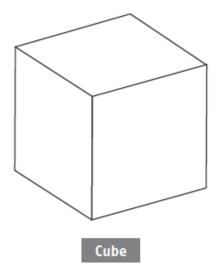
COLORIE en vert une figure isométrique (de mêmes mesures) au rectangle BDHF.

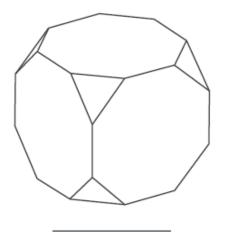
DÉTERMINE la nature du triangle ABC.

Le triangle Abt est et et	Le triangle <i>ABC</i> est	et	
---------------------------	----------------------------	----	--


(CEID 2019 Q17)

PLACE le point *P* si :


■ *P* se trouve à égale distance des côtés [*BA*] et [*BC*] ;


et

■ *P* appartient au côté [*AC*] du triangle *ABC*.

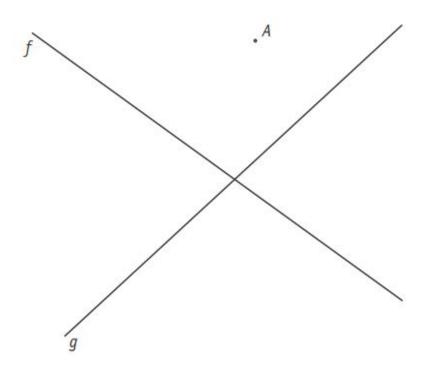
(CEID 2018 Q37)

Cube tronqué

Un cube tronqué est un cube duquel on a retiré chaque « coin ».

DÉTERMINE sur ce cube tronqué:

- le nombre de faces octogonales : _____
- le nombre de faces triangulaires : _____
- le nombre de sommets : _____

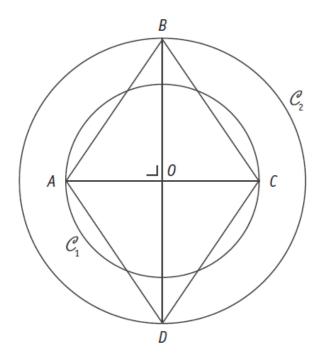

(CEID 2019 Q19)

ÉCRIS la caractéristique commune aux diagonales d'un rectangle et d'un losange.

ÉCRIS la caractéristique supplémentaire des diagonales d'un carré par rapport à celles d'un rectangle.

(CEID 2019 Q18)

CONSTRUIS un triangle dont le point A est un sommet et dont les droites f et g sont deux de ses médiatrices.

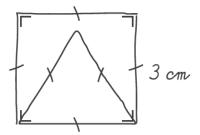

(CEID 2019 Q42)

COMPLÈTE par le vocabulaire adéquat.

1	Un quadrilatère qui n'a pas d'axe de symétrie et qui a un centre de symétrie
	est un
	Un triangle qui a un seul axe de symétrie est un triangle

(CEID 2019 Q20)

Soit \mathcal{C}_1 un cercle de centre 0 et de rayon |OA|Soit \mathcal{C}_2 un cercle de centre 0 et de rayon |OB|



CARACTÉRISE avec précision la position relative des cercles $\mathcal{C}_{\!\scriptscriptstyle 1}$ et $\mathcal{C}_{\!\scriptscriptstyle 2}$.

 $\mathcal{C}_{\!\scriptscriptstyle 1}$ et $\mathcal{C}_{\!\scriptscriptstyle 2}$ sont deux cercles ______.

JUSTIFIE que le quadrilatère ABCD est un losange.

(CEID 2019 Q41)

CONSTRUIS, en vraie grandeur, la figure ci-dessus.